Hydraulic Elevators are Energy Efficient and Future-oriented
The Advantages of Hydraulic Elevators

<table>
<thead>
<tr>
<th>Hydraulic elevators</th>
<th>Traction elevators (with no machine room)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td>Noise source is normally placed in the pit head, the noise is loudest in the top floor (attic flat)</td>
</tr>
<tr>
<td>Smaller space requirement in the shaft</td>
<td>Smaller car due to the considerable space needed for the sheave assembly and counter-weight, alternatively a larger shaft cross-section and head height</td>
</tr>
<tr>
<td>Architectural design scope is very restricted</td>
<td></td>
</tr>
<tr>
<td>Smaller car due to the considerable space needed for the sheave assembly and counter-weight, alternatively a larger shaft cross-section and head height</td>
<td></td>
</tr>
<tr>
<td>A great deal of design freedom for architects</td>
<td></td>
</tr>
<tr>
<td>No constraints on doorways or the shape of the car</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>Safety during service and repair work, since there is no moving counterweight</td>
</tr>
<tr>
<td>Emergency evacuation procedures are very simple and completely safe</td>
<td>Complicated, and in some respects hazardous, emergency evacuation procedures</td>
</tr>
<tr>
<td>Much safer when used in earthquake zones</td>
<td>In an earthquake, the danger from drive components or the counterweight falling on the car</td>
</tr>
<tr>
<td>Maintenance and service</td>
<td>Safety during service and repair work, since there is no moving counterweight</td>
</tr>
<tr>
<td>Low-maintenance drive technology</td>
<td>Long repair and maintenance times</td>
</tr>
<tr>
<td>No wear on pulleys and ropes</td>
<td>Heavy wear on traction sheave and ropes</td>
</tr>
<tr>
<td>Replacement parts are seldom needed</td>
<td>With manufacturer-dependent systems, the operator is „locked in“ for maintenance and repairs; independent service providers are shut out</td>
</tr>
<tr>
<td>Free choice of maintenance companies</td>
<td>Complicated work procedures, and hazardous working situations</td>
</tr>
<tr>
<td>Drive is easy accessible</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td>The drive system in the shaft head is difficult to access and assembly work is hazardous</td>
</tr>
<tr>
<td>Simple and economical assembly</td>
<td></td>
</tr>
<tr>
<td>Hydraulic elevators are particularly suitable for projects where retrofitting is involved</td>
<td></td>
</tr>
<tr>
<td>Costs</td>
<td>Very high costs for service and replacement parts</td>
</tr>
<tr>
<td>For buildings with up to five floors, the cost effectiveness of hydraulic elevators is virtually unbeatable</td>
<td></td>
</tr>
</tbody>
</table>
Save Costs with Hydraulic Elevators

Based on a study on power consumption and savings potential with elevators and of the known maintenance costs of hydraulic and traction elevators, the result is over **€ 800 annual savings** for a hydraulic passenger elevator in an apartment building.

This study is the foundation of below-mentioned calculation of energy costs for an elevator in an apartment building in which 40 000 trips are taken per annum, i.e. approx 100 trips daily.

Annual costs

<table>
<thead>
<tr>
<th></th>
<th>Hydraulic elevators</th>
<th>Traction elevators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive consumption</td>
<td>650 kWh</td>
<td>250 kWh</td>
</tr>
<tr>
<td>Standby</td>
<td>650 kWh</td>
<td>750 kWh</td>
</tr>
<tr>
<td>Total</td>
<td>1 300 kWh</td>
<td>1 000 kWh</td>
</tr>
<tr>
<td>Energy costs</td>
<td>260 €</td>
<td>200 €</td>
</tr>
<tr>
<td>Maintenance</td>
<td>1 000 €</td>
<td>1 000 €</td>
</tr>
</tbody>
</table>

Bases of calculation

Energy costs are made up of the consumption for trips and for standby times.

- "By a factor of 1.6 higher power consumption than traction elevators with a typical load factor."
- "One quarter of savings with a hydraulic elevator is the result based on dispensing with the inverter."

Source: Swiss Federal Office of Energy, study by the S.A.F.E. Schweizerische Agentur für Energieeffizienz (Swiss Agency for Energy Efficiency), final report on power consumption and savings potential with elevators.

With a hydraulic elevator, oil and seals must be changed every 15 years. Materials are obtainable on the open market for hydraulics. With a traction elevator, ropes and sheaves must be changed on average every 10 years. The parts required are proprietary and expensive.

For a hydraulic elevator in an apartment building, the result is over **€ 800 annual savings**.
Hydraulic Elevators Ensure Quick Arrival

Total ride time counts, not maximum speed

Important is the total ride time

Would you fly by airplane to the nearest town? Your travel speed would be very high, but check-in, security, and downtime at the airports make up most of the travel time, so the high ticket price would not be justified.

Riding an elevator is similar: When the travel is short, max. speed is only reached for a short time. A typical „stop and go“ ride up to 6 floors hardly ever justifies a higher max. speed than 0.63 m/s.

58% higher max. speed \(v \) only results in an 18% reduction in ride time!
The Department of Energy therefore recommends: „For houses with up to 6 floors/stops, 0.63 m/s nominal speed is normally sufficient“ *

Comparison for a 4-stop system with 9 m travel:

\[
v = 0.63 \text{ m/s}
\]

<table>
<thead>
<tr>
<th>Speed</th>
<th>Doors close</th>
<th>Effective ride time</th>
<th>Doors open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready for departure</td>
<td>2.5”</td>
<td>17.3”</td>
<td>2.5”</td>
</tr>
</tbody>
</table>

Total ride time: 22.3 seconds

\[
v = 1 \text{ m/s}
\]

<table>
<thead>
<tr>
<th>Speed</th>
<th>Doors close</th>
<th>Effective ride time</th>
<th>Doors open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready for departure</td>
<td>2.5”</td>
<td>13.3”</td>
<td>2.5”</td>
</tr>
</tbody>
</table>

Total ride time: 18.3 seconds

Time saving: only 4 seconds!

* Source: Swiss Federal Office of Energy, study by the S.A.F.E. Schweizerische Agentur für Energieeffizienz (Swiss Agency for Energy Efficiency), final report on power consumption and savings potential with elevators
With Hydraulic Elevators You Ride Safe

Hydraulic elevators are safe in all phases of operation: Safe installation and service, high earthquake resistance and simple emergency rescue without backup power. All this is good to know, if you do not want to compromise safety in any way.

The new requirements for protection against uncontrolled movement of the cabin (A3 standard) are easy to fulfill with a hydraulic elevator.

Phase

Your safety dividend with hydraulics

<table>
<thead>
<tr>
<th>Phase</th>
<th>Your safety dividend with hydraulics</th>
</tr>
</thead>
</table>
| Riding behaviour | • Comfortable and safe riding feeling
• Stopping accuracy ±3 mm
• Smooth starting and stopping |
| Installation | • Hydraulic elevators are safer to install
• No heavy drives to be installed overhead
• No counterweights (no risk of collisions or uncontrolled upward movement) |
| Service / Repair | • All work on the drive can be done while standing safely
• No risk to service staff from counterweights
• No replacement of heavy sheves and ropes required
• Drive service can be done with shaft doors closed, minimising the risk to the public of an accidental fall |
| Rescue / Evacuation | • Fast rescue downwards, independent of load
• Simple procedure does not require trained staff
• No danger from counterweights in multiplex systems |
| Fire | • Fast evacuation downwards is standard
(with traction MRLs, smoke rising up the shaft can hinder access to the rescue elements on the top floor) |
| Earthquake | • The shaft head does not carry heavy loads (drive is on the ground)
• No risk of dangerous counterweight oscillations |

Additional advantages:

- Minimum service requirements ensure cost-effective operation
- Large planning flexibility allows for an efficient and inexpensive solution to your transportation needs
- Highest ride comfort and low noise emissions with a machine room will satisfy the most demanding users
Hydraulic Elevators Are Flexible

Hydraulic elevator drives by Bucher Hydraulics have proven successful over many years and in many ways:
Freedom of design for architects, non-proprietary technology, simple installation, ease of maintenance, long service life and the most modern valve technology.

Flexible car frame kits
Due to prefabricated car frame kits this is also possible with hydraulics:
- to realise a machine-room-less elevator
- to plan with reduced shaft pit
- to reach the top floor easily despite low shaft head

The car frame system Pluto (cantilevered)

Exceptional freedom
- The arrangement of the doors can be determined largely flexible
- The machine room does not have to be near the shaft

Ride comfort
- Electronically controlled elevator valves by Bucher Hydraulics let the elevator ride smoothly and gently, irrespective of load and temperature
- The running-in precision is ±3 mm: Stumbling impossible!

Safety in all situations
- Since the drive is accessible from the outside, maintenance can be done easily, safely and quickly
- In case of an earthquake there is no danger of falling counterweights

Installation, maintenance and service
- Hydraulic elevator drives are constructed based on a simple and well-known technical system
- Spare parts can be obtained and installed independently of the manufacturer

The car frame Jupiter (tandem arrangement)

Advantages on a glance:
- Low maintenance
- Long service life
- Machine room can be placed flexibly
- High reliability
- Very good cost-benefit ratio
- Proven standard components that are in use in over 100000 installations worldwide

The Tiger MRL system (Machine-Room-Less)

Advantages on a glance:
- Large variety of variants with the same type
- Simple planning
- 3 entrances possible
- Easy and fast installation
- Just one supporting shaft wall necessary
- Rail brackets for different wall distances
- Can be realized as machine-room-less solution: No machine room required
Bucher Hydraulics variable frequency drive products have been on the market for over 10 years. The benefits of this technology are many:

- High number of rides thanks to shorter ride times
- Maximum availability in high use, high load applications, such as shopping centres, hospitals, sports stadiums, railway stations, airports etc.
- Low heat build-up allows for up to 200 rides/hour without oil cooler
- Low noise for a better environment

Our satisfied customers can confirm the strong performance of the Bucher Hydraulics variable frequency drive technology. Examples of realised projects:

- Railway stations: Network-Rail (UK), Deutsche Bahn
- Airports: Frankfurt, Pudong Airport (Shanghai)
- Others: IKEA, Kaufland-Group, Daimler, Messe Frankfurt
Avoid heat build-up: Variable frequency drive instead of oil cooler

Hydraulic Elevators with Variable Frequency

For highly used elevators an oil cooler is an imperfect compromise - it is much better without!

With variable frequency you can reach easily high numbers of travels without oil cooler.

Reduce waste heat by using:
- Electronic valve technology
- Original Bucher Hydraulics variable frequency drive technology

Avoid unnecessary heat build-up

Example: 1 000 kg contract load, 4 stops, speed 0.63 m/s, 120 rides/h during 9 hours per day

<table>
<thead>
<tr>
<th></th>
<th>Ride curve «UP»</th>
<th>Ride curve «DOWN»</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competitor standard mechanical valve</td>
<td>high heat build-up</td>
<td>oil cooler required</td>
</tr>
<tr>
<td>BUCHER hydraulics</td>
<td>Variable frequency controlled valve VF Valve / VF-LRV</td>
<td>low heat build-up</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power requirement from the grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat build-up</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Your energy savings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No heat build-up</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3.7 kW</th>
<th>1.6 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat gain:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required cooling:</td>
<td>2.3 kW</td>
<td>0 kW</td>
</tr>
<tr>
<td>Rides possible without cooling:</td>
<td>45 rides / h</td>
<td>140 rides / h</td>
</tr>
<tr>
<td>Power consumption per year:</td>
<td>14 310 kWh</td>
<td>6 160 kWh</td>
</tr>
<tr>
<td>Energy costs per year:</td>
<td>EUR 1 820</td>
<td>EUR 778</td>
</tr>
<tr>
<td>Your saving per year:</td>
<td>EUR 1 042</td>
<td></td>
</tr>
</tbody>
</table>

Investment cost:

<table>
<thead>
<tr>
<th></th>
<th>EUR 800</th>
<th>EUR 3 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil cooler:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVAC costs to the building**:</td>
<td>EUR 3 450</td>
<td>EUR 800</td>
</tr>
<tr>
<td>Total:</td>
<td>EUR 4 250</td>
<td>EUR 3 800</td>
</tr>
<tr>
<td>Your savings per year:</td>
<td>EUR 450</td>
<td></td>
</tr>
</tbody>
</table>

Your benefits:

- Up to 200 starts/h without cooler
- Saves up to 80% drive energy
- Up to 10 dBA quieter
- Shorter ride times with a faster start
- Reduced power connection requirement when combined with a hydraulic counterweight
- Reduced wear thanks to lower oil temperatures
- Cost-effective installation with minimal HVAC costs

* Cost for HVAC equipment to exhaust heat from the building: Assumption = 1 500.- EUR per kW cooling load

* 1 000 kg contract load, 4 stops, speed 0.63 m/s, 120 rides/h during 9 hours per day
The defining factor is the correct definition of the usage category

Hydraulic Elevators Are Energy Efficient

To use the available energy most efficiently, you need to know how the elevator is going to be used: Elevators in usage category 1 are standing for 99% of the time, an airport elevator is running all the time!

Energy efficiency therefore primarily means finding the right drive solution for the specific application. Bucher Hydraulics has the optimum energy efficient drive for every usage category.

<table>
<thead>
<tr>
<th>Usage category as per VDI 4707</th>
<th>Usage frequency (effective ride time per day)</th>
<th>Typical application</th>
<th>Important for good energy efficiency</th>
<th>Recommended solution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 3</td>
<td>very low (12 to 90 min)</td>
<td>Small residential or office building, small goods elevator</td>
<td>low standby power consumption</td>
<td>Comfort Line</td>
</tr>
<tr>
<td>3 and higher</td>
<td>medium (90 to 360 min)</td>
<td>Large residential or office building, public buildings, large goods elevator</td>
<td>low drive consumption</td>
<td>Comfort Line / Eco Line</td>
</tr>
<tr>
<td>4 and higher</td>
<td>high (180 to 360 min)</td>
<td>Shopping Centre, Railway Station, Airport</td>
<td>low drive consumption</td>
<td>Eco Line</td>
</tr>
</tbody>
</table>

Example:
For a medium sized residential building an elevator is required with a comfortable ride but which will not be used very often. For high energy efficiency low standby power consumption is key, therefore the best product for the drive is the Comfort Line.

If the elevator is not used frequently, then look for low standby consumption; if the elevator is highly used, low drive consumption is important.

Facts:
- Typically over 50% of overall elevator power consumption is used during standby
- Cost effective measures can reduce standby requirement still further:
 - LED lighting vs. older lighting technologies
 - No permanent door power
 - Timer function for lighting and electronics
- Hydraulic drives use less standby power than traction drives
A well-known Swiss Technical University has made - together with Bucher Hydraulics - an interesting study about the ecological footprint of a hydraulic and a traction elevator.

Result:

A traction elevator needs a bit less energy during the ride, but has a stronger polluting effect over its lifetime!

This study was performed using the Life Cycle Assessment (LCA) method. The data collected allow for a sustainability comparison between a gearless traction MRL drive system and a hydraulic drive system with electronic control. The basis is a standard passenger elevator for an apartment building for 8 people, 1.0 m/s over 15 m. Measurement and qualification are done using Eco Indicator Points (EIP), also known as (environmental) impact points. They cover all kinds of environmental impacts such as climate change, health problems, land use or availability of resources.

Comparison of the impact points for the hydraulic, and for the traction drive system:

- The hydraulic drive system is **more sustainable** than the traction drive system
- Complete replacement of a hydraulic elevator with a traction elevator does not make ecological sense: A **partial modernisation** is often the more sustainable approach
- The impact of energy use during the whole lifetime is **far smaller** than the environmental impact of the manufacture and installation
Our contribution to sustainability

Environmentally Sound Production

ECOdraulics is the symbol of Bucher Hydraulics’ commitment to the environment. It encompasses those products, manufacturing processes and services that are sustainable and make a significant contribution to protecting the environment.

ECOdraulics products display at least one of the following characteristics to an above-average extent:

- Reduced energy consumption
 - Low emissions
 - Long life
- Light and space-saving

ECOdraulics is a guiding principle that applies from component design through system development and right up to production. In this way, we support our customers at all levels in developing innovative, efficient and long-lasting products.

www.ecodraulics.com

We support the Sustainability Initiative BLUecoMPETENCE of the VDMA and contribute to an industry that produces sustainably: www.bluecompetence.net
„Hydraulic Elevators are Energy Efficient and Future-oriented“
Facts, arguments and explanations